

## CII – 22<sup>nd</sup> National Award for "Excellence In Energy Management - 2021"







### 1. Brief introduction on Company/Unit

## **Our Purpose**

We Innovate Mobility Solutions With Passion To Enhance Quality Of Life



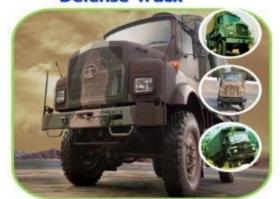


## 1. Brief introduction on Company/Unit

## **Our Products**

**Ultra Truck** 




**Xeon Pickup** 



CONSTRUCK

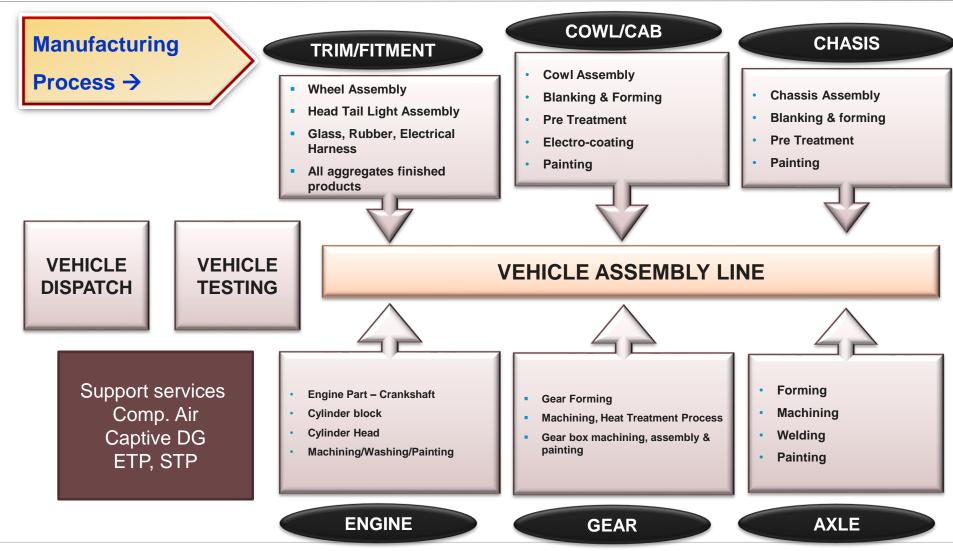


**Defense Truck** 



**TATA Buses** 

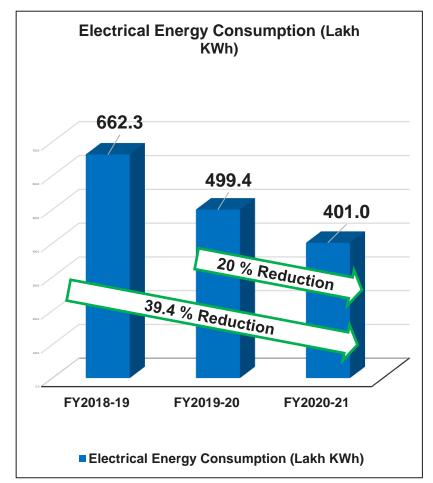


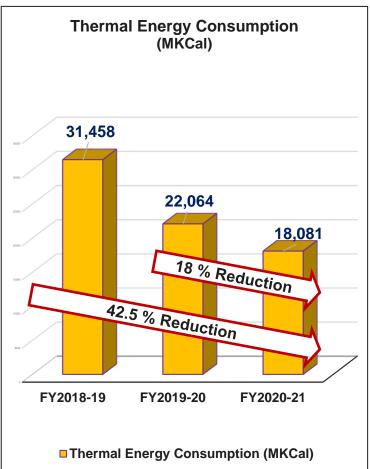

Winger

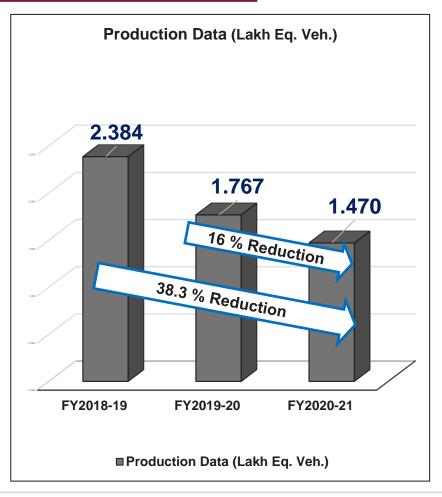






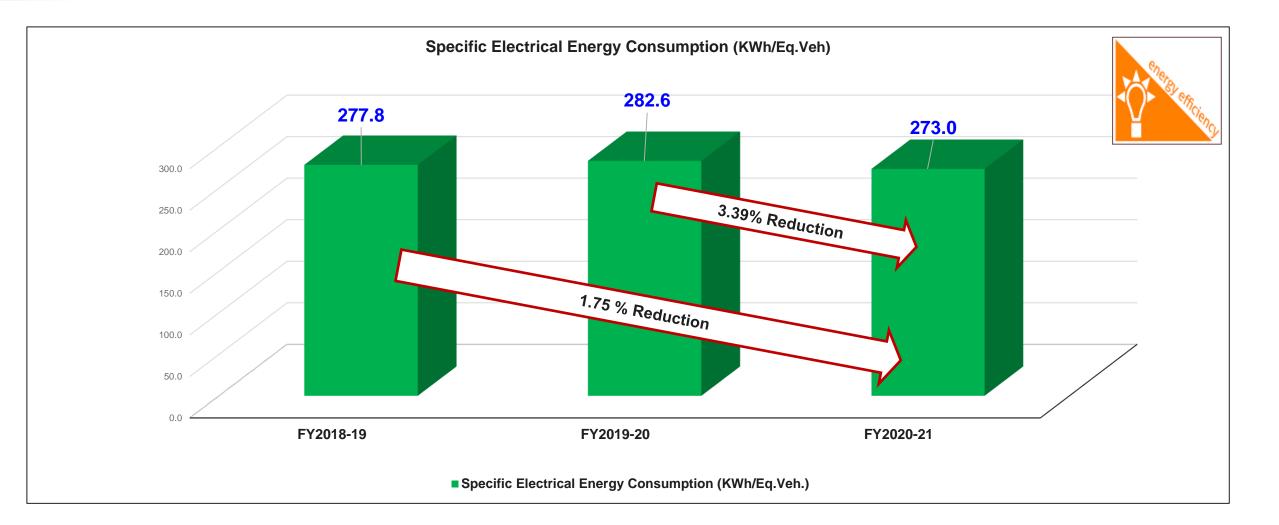

## 1. Brief introduction on Company/Unit





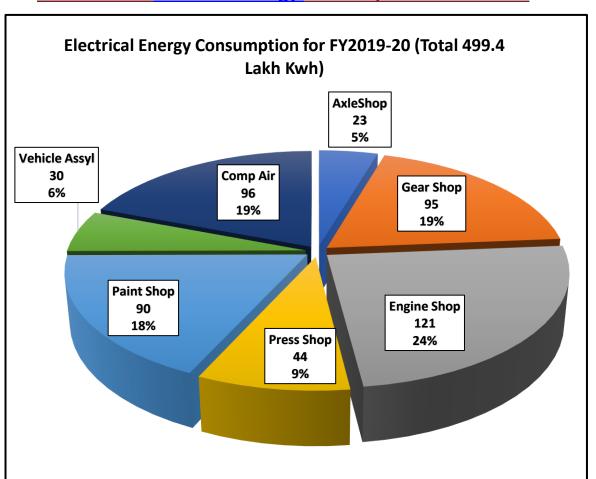

## **Overall Energy Consumption and Production Data FY2018 - 2021**



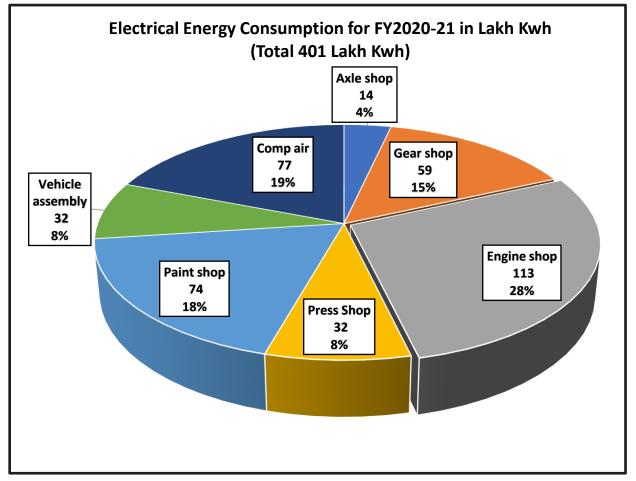











#### **Process wise Electrical Energy Consumption FY2019 - 20**

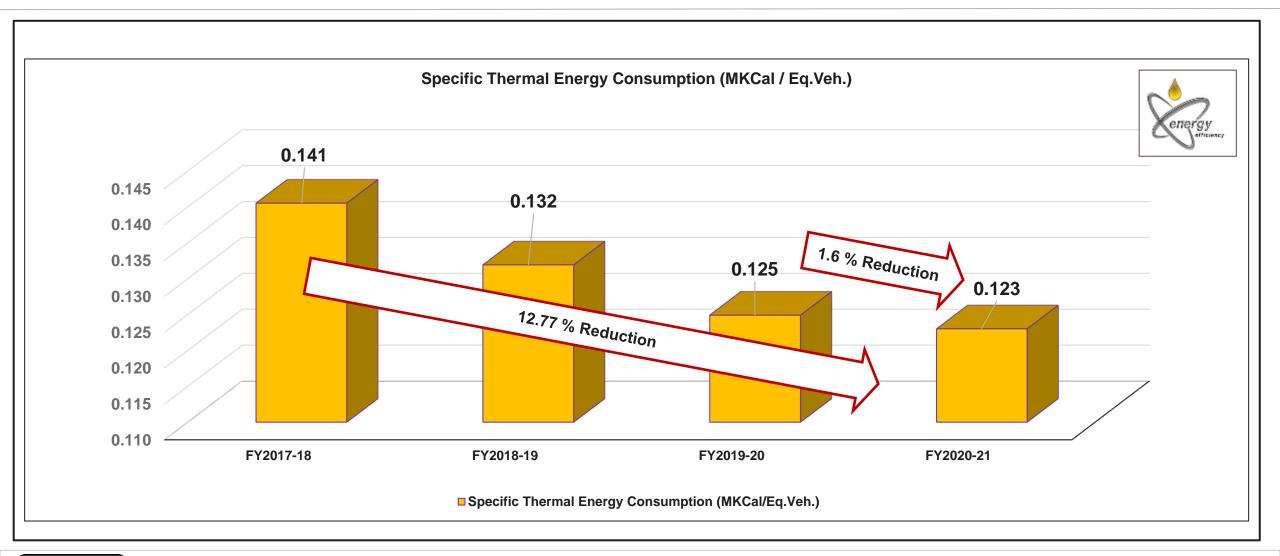


#### **Process wise Electrical Energy Consumption FY2020 - 21**





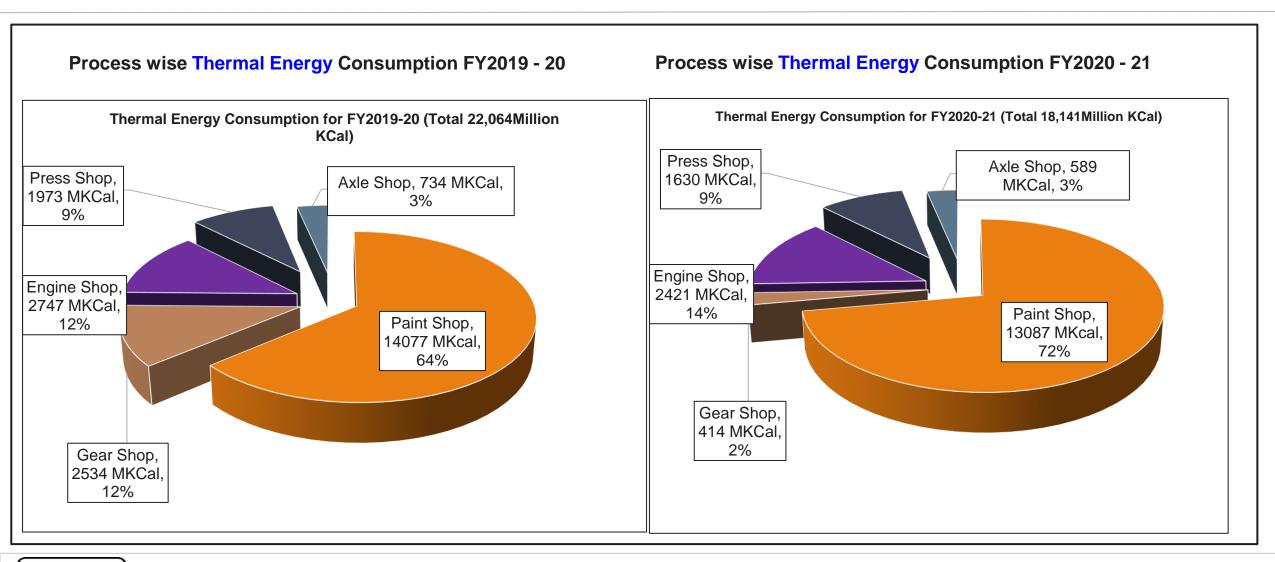



## **Energy Planning FY-2021-22**

| Power Rs<br>Kwh/Eq Veh | FY 21-22 (TC)   |        |                | FY 21-22 (SC) (5%) |        |                | FY 21-22 (SSC) (10%) |        |                |
|------------------------|-----------------|--------|----------------|--------------------|--------|----------------|----------------------|--------|----------------|
| Element                | KWh in<br>Lakhs | Eq Veh | Rs / Eq<br>Veh | KWh in<br>Lakhs    | Eq Veh | Rs / Eq<br>Veh | KWh in<br>Lakhs      | Eq Veh | Rs / Eq<br>Veh |
| Axle                   | 20              | 13051  | 153            | 19                 | 13051  | 146            | 18                   | 13051  | 138            |
| Gear                   | 85              | 23100  | 368            | 81                 | 23100  | 350            | 77                   | 23100  | 331            |
| Engine                 | 161             | 58057  | 278            | 153                | 58057  | 264            | 145                  | 58057  | 250            |
| Vehicle D              | 16              | 30540  | 53             | 15                 | 30540  | 50             | 15                   | 30540  | 48             |
| Vehicle H              | 12.1            | 25131  | 48             | 11.5               | 25131  | 46             | 10.9                 | 25131  | 43             |
| E Block                | 46              | 14899  | 310            | 44                 | 14899  | 295            | 42                   | 14899  | 279            |
| Winger                 | 5               | 4096   | 119            | 5                  | 4096   | 113            | 4                    | 4096   | 107            |
| Xenon                  | 12              | 24288  | 49             | 11                 | 24288  | 47             | 11                   | 24288  | 44             |
| J Paint                | 108             | 16837  | 643            | 103                | 16837  | 611            | 97                   | 16837  | 579            |
| Comp Air               | 107             | 210000 | 51             | 102                | 210000 | 49             | 97                   | 210000 | 46             |
| Total                  | 573             | 210000 | 273            | 544                | 210000 | 259            | 516                  | 210000 | 246            |






## 3. Specific Energy Consumption in Last 3 Years - Thermal



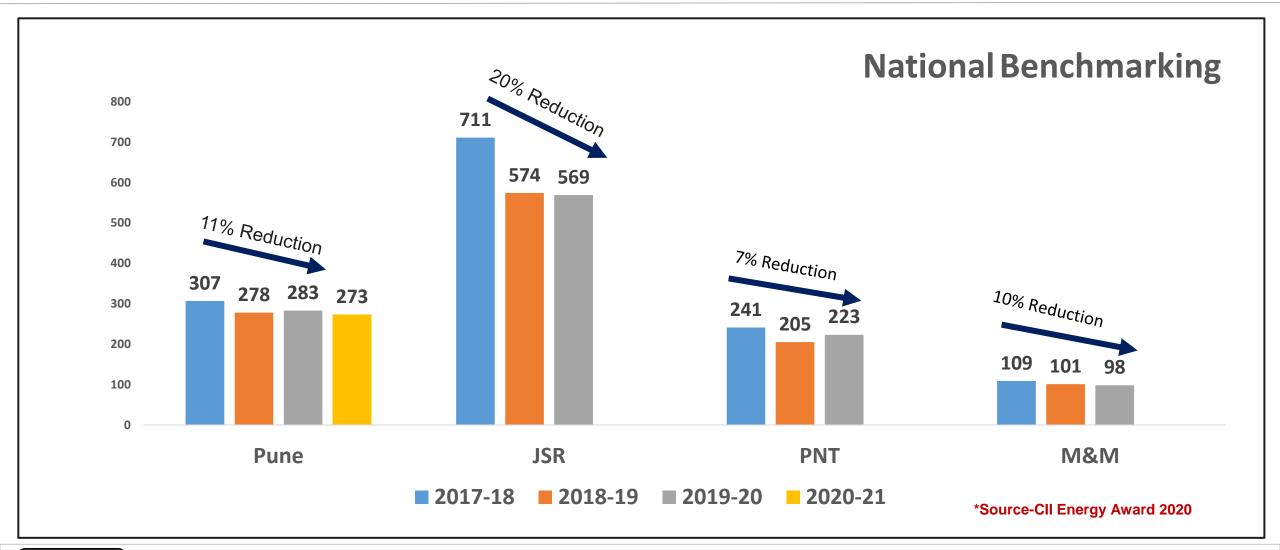




### 3. Specific Energy Consumption in Last 3 Years - Thermal

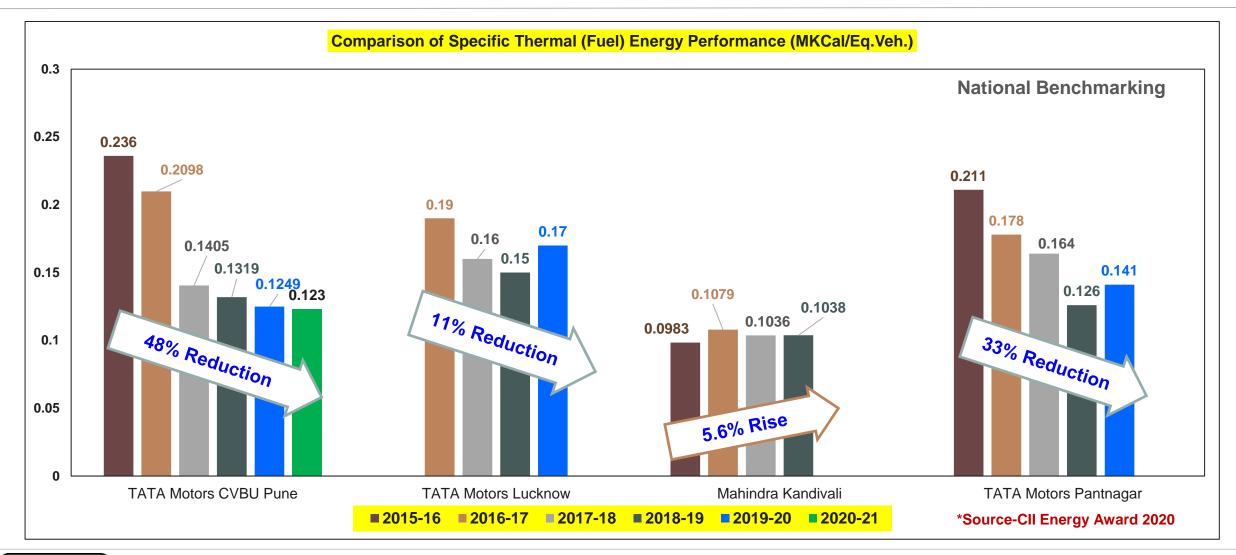









## 4.0 BENCHMARKING


















## **Global Benchmark**

TATA Motors CVBU Pune Energy performance is better than its Global competitors but still we would like to highlight the following aspects

- Apple to apple comparison is very difficult to compare
- Manufacturing models are different, eg. In CVBU Pune, we are having all manufacturing processes.
- Climatic conditions varies





Real-time Monitoring and analysis

## Roadmap to achieve Benchmark / Global Best :-TATA Motors CVBU Pune Plant will continue to refine all process to achieve Benchmark Level. To Sustain the Best Achieved Level:-We are following robust process of assessment of performance vis-à-vis comparative information / benchmark from different organisation and standards. Roadmap:-Intelligent management-Optimise and effective use of Resources IOT / Machine management - Adapt Latest Technology Lean manufacturing and Processes Management - Innovations Clean resources - Maximise Renewable Energy GHG Management - Reduce Carbon Footprint





## Roadmap

| <ul> <li>Realign the Processes</li> <li>Continual process<br/>improvement</li> </ul> | <ul> <li>ECO (Machines IDLE run optimization)</li> <li>CNC / Robotic Technology</li> <li>RTPFC – Unity PF</li> <li>IoT – industry 4.0</li> </ul> | Sensor Technology     Process Optimization     Energy Bank Concept | <ul> <li>• 22MW captive Wind Power + Additional<br/>18 MW Third Party Purchase.</li> <li>• 4.5 MW Solar Power</li> </ul> |                               |  |  |
|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------|--|--|
| • Improve to the MOP (measurement of Performance) up to 400                          | <ul><li>HVLS Fans</li><li>Room temp washing</li><li>Day light utilization technology.</li></ul>                                                  | Conversion of LDO to NG for Pretreatment                           | •75 % Achieved for CVBU Pune                                                                                             |                               |  |  |
| Adapt Cleaner Fuel     Eg. LDO to NG                                                 | <ul> <li>Lighting management and<br/>standardization.</li> </ul>                                                                                 | • WHRS(Waste Heat<br>Recovery System) in<br>Engine Test Beds       | Signed RE100. GHG Management - 5 Year Road Map.                                                                          |                               |  |  |
| Optimize<br>Resources                                                                | Adapt Latest<br>Technology                                                                                                                       | Innovations                                                        | Maximize<br>Renewable<br>Energy                                                                                          | Reduce<br>Carbon<br>Footprint |  |  |





## ☐ Summary of Project Implemented in Last Three Years

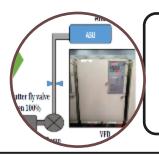
| Year    | No of Proposals | Investments<br>(Rs. Million) | Savings (Rs.<br>Million) | Payback Months |  |
|---------|-----------------|------------------------------|--------------------------|----------------|--|
| 2018-19 | 12              | 18.3                         | 23.3                     | 9              |  |
| 2019-20 | 14              | 12.8                         | 28.9                     | 5              |  |
| 2020-21 | 20              | 12.4                         | 32.5                     | 5              |  |
| Total   | 46              | 43.4                         | 84.7                     | 7              |  |





List of Major Implemented Energy Conservation Projects\_FY2020-21




#### **Electrical heating to CNG conversion (Total 5 Machines converted to NG)**

- Energy Cost Saving → Rs. 26.33 Lakh
- Investment → Nil
- Total kwh saving → 2,82,000 kwh/Year



## REDUCING ENERGY CONSUMPTION OF PERFORMANCE TEST BED BY LOWERING SPEED OF BLOWER SPEED (16 no's VFD installed).

- Energy Cost Saving → Rs. 27.56 Lakh
- Investment → Rs. 8 Lakh
- Total kwh saving → 3,32,448 kwh/Year



#### **ELIMINATION OF PUMP THROTTLING AT J11/J12 PAINT SHOP(Modulation of pump flow with VFD)**

- Energy Cost Saving → Rs. 19.73 Lakh
- Investment → NIL
- Total kwh saving → 2,12,585 kwh/Year





List of Major Implemented Energy Conservation Projects \_ FY2019-20



New Technology - Replaced CL666 & installed new Cylinder Block Honing (Servo-controlled system without Hydraulics).

- Energy Cost Saving → Rs. 5.5 Lakh
- Investment → Rs. 5 Lakh



Converting Nos. of Sodium Vapour Lamps to Highbay LEDs - High bay lamps to convert to LED Qty 1579 Nos.

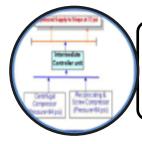
- Energy Cost Saving → Rs. 106.93 Lakh
- Investment → Rs. 105.78 Lakh



Conversion of 36W Tube light to 18W LED Tube - Qty 787 nos.

- Energy Cost Saving → Rs. 7.89 Lakh
- Investment → Rs. 3.15 Lakh






☐ List of Major Implemented Energy Conservation Projects \_ FY2018-19



Waste Heat Recovery System Reutilization of Waste heat of flue gas of Engine Test Beds for heating water in Washing Machine.

- Energy Cost Saving → Rs. 13.97 Lakh
- Investment → Rs. 25 Lakh



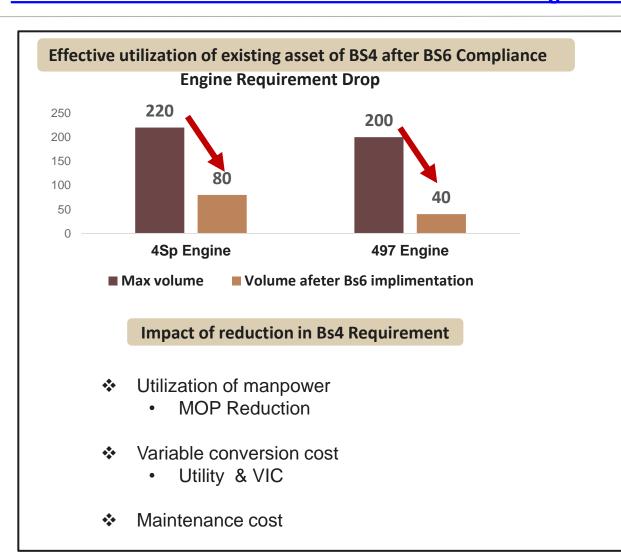
Intermediate unit for Air compressor in J Paint shop.

- Energy Cost Saving → Rs. 5.19 Lakh
- Investment → Rs. 5 Lakh



Installation of VFD's for Blowers & Pumps.

- Energy Cost Saving → Rs. 1.62 Lakh
- Investment → Rs. 0.3 Lakh





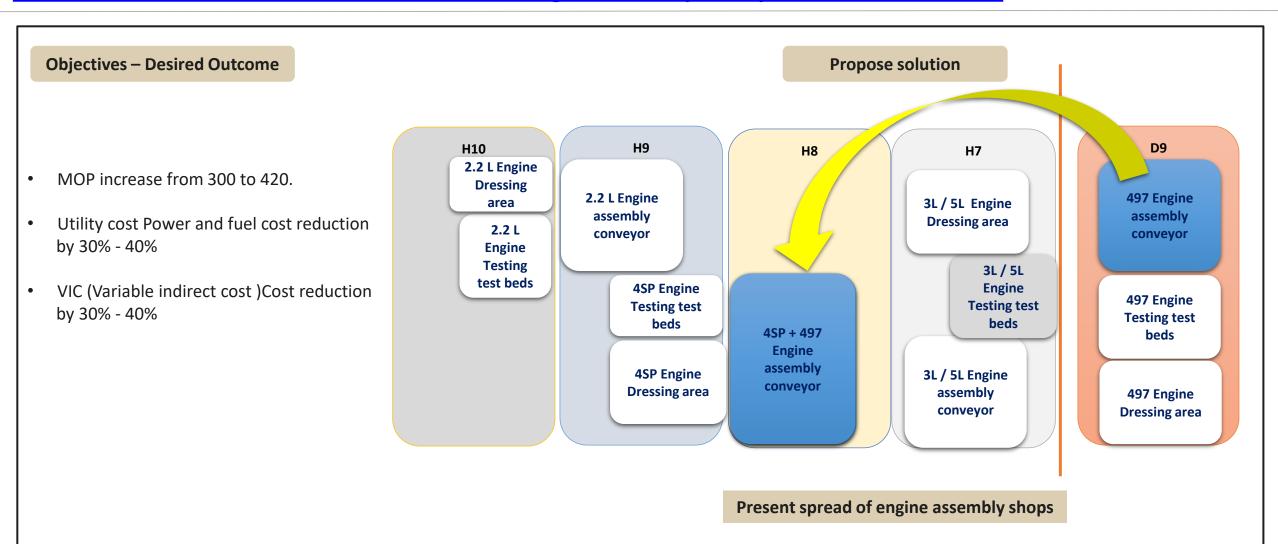

## **6.Innovations**





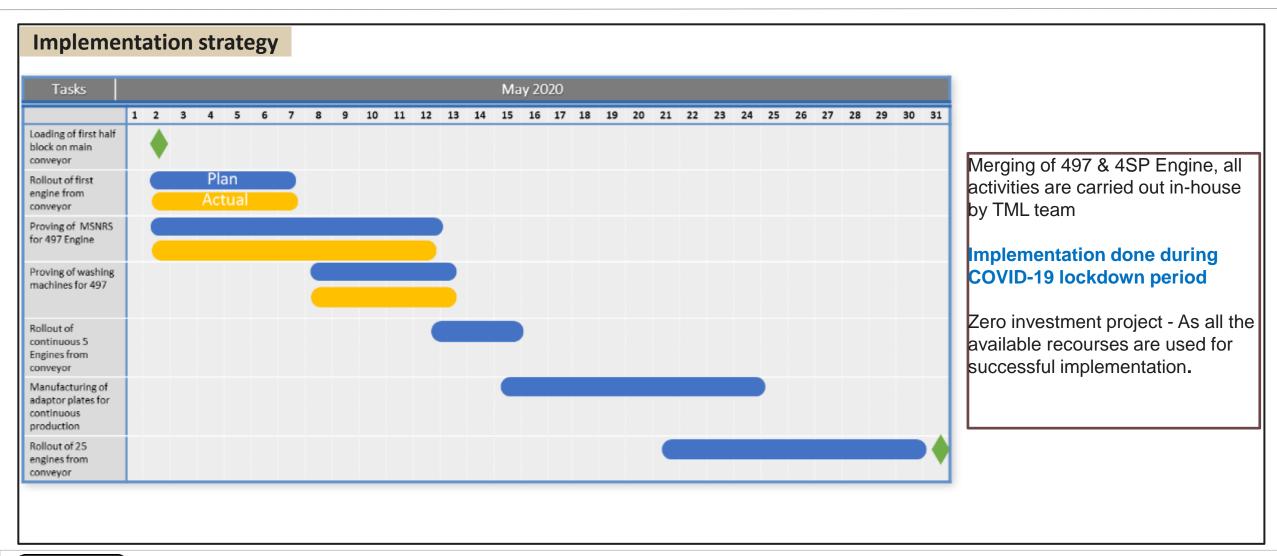


#### **Team Formation**


- Engine manufacturing team
- Support service team Maintenance and Utility
- Technical service team
- Software Team

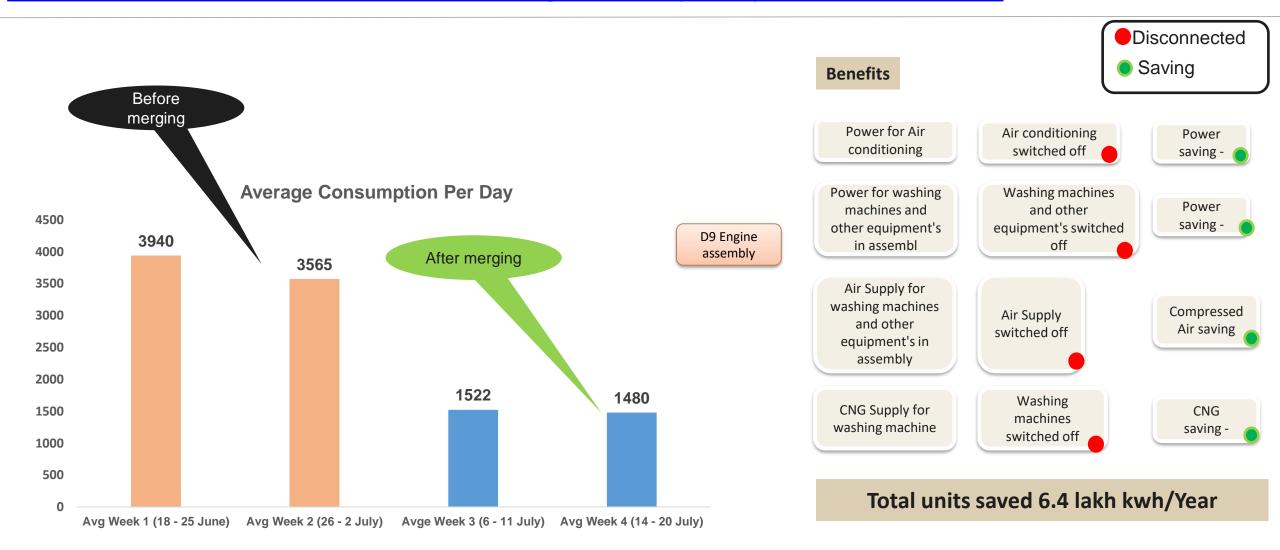
#### **Feasibility study**

- Feasibility of Merging 497 at H7 / H8 / H10
- Infrastructure requirement
- Deployment of manpower
- Utility & VIC cost reduction







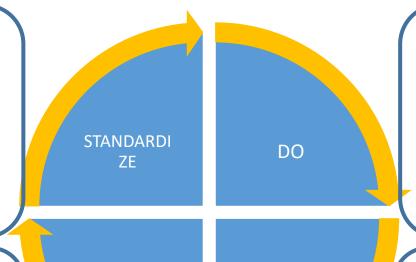













#### 6. Innovation -Project 2: "Non working day fix power consumption reduction."

#### SDCA FOR NWD CONSUMPTION REDUCTION (Block Closure) - Pune CV

- Non Working Day Plan of Each Factory as per business emergencies & exigencies requirement. Prior PH approval is mandatory.
- Shiftwise Measurement Standard.
- Derived a 2x2 Matrix for understanding the Power Consumption on Non Working Days.
- According to Number of Non Working days Standard Consumption Pattern is derived & allotted Target.
- Standard template for capturing Shiftwise working and approximation of consumption of each area.
- Shift in-charge for Block Closure and non working days.
- Fixed time for compressed air availability across the plant for equipment trial after PM.
- From Data analysis, reason for Higher Consumption identified
   & corrective actions taken for further Block Closures.
- E.g. Deployment plan for portable compressor unit instead of Centralized Compressor.
- No work No Air message from Plant Head Office.
- Plant Head Office Approval for any last minute emergencies & exigencies requirements.
- Learnings are captured for next Block Closure.



CHECK

- Blockwise target defined and communicated to all factories by considering their NWD Plan as per Plant Head Approval.
- Planned Shutdown of Heat Treatment for effective reduction in consumption.
- Downtake Valve of Compressed Air of Non Working Area of each factory has been made OFF.
- Deployed each factory coordinator to identify energy waste.

- Audit is carried out by Factory coordinator in their Area along with Energy Cell.
- Compressed Air Dept. maintain the Air consumption data of each Block.
- Shiftwise & Area wise consumption is monitored against target.
- Comparing the Consumption of Non Working Days.



**ACT** 



#### 6. Innovation – Project 3: "Innovative approach for Press power consumption reduction."

#### Consumption reduction for Cushion application during process run

- 1700 Ton Press is used for press component long member punching and forming operation
- Punching operation does not required cushioning
- Dies are different for punching and forming operation.
- While doing the forming operation cushioning is used for forming the long member
- For cushion operation 22 kw motor is running continuously throughout the cycle at 50Hz
- Total 9 Nos of 22 kw motors are used for Press

Earlier 22KW cushion motor up/down both running at 50Hz.

Current at 50HZ – 18.9A







## 6. Innovation - Project 3: "Innovative approach for Press power consumption reduction."

#### **SOURCE OF IDEA**

| VCC Power & Fuel CLT - Idea Status (Implemented & In pipeline) - GEAR |                                                                                                   |       |               |                         |          |                          |  |  |
|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------|---------------|-------------------------|----------|--------------------------|--|--|
| Sr<br>No                                                              | Idea Description                                                                                  |       | Idea Origin   | Idea<br>Origin<br>Plant | Category | Main Lever<br>Identified |  |  |
| 1                                                                     | CB air charging time more Compressed air to be run in C shift                                     | Power | Factory Level | Pune                    | Power    | Reduce                   |  |  |
| 2                                                                     | Hitachi line washing machine to be kept off during change over                                    | Power | Factory Level | Pune                    | Power    | Reduce                   |  |  |
| 3                                                                     | MCF interlock with machine control ON                                                             | Power | Factory Level | Pune                    | Power    | Reduce                   |  |  |
| 4                                                                     | Shot Blasting traightening m/c outlet conveyor interlock with plate presence at entry gate        | Power | Factory Level | Pune                    | Power    | Reduce                   |  |  |
| 5                                                                     | Elimination of IDLE running of motor.                                                             | Power | Factory Level | Pune                    | Power    | Alternate                |  |  |
| 6                                                                     | Shot Blasting M2 outlet conveyor interlock with plate presence at entry gate                      | Power | Factory Level | Pune                    | Power    | Reduce                   |  |  |
| 7                                                                     | 5100T Press Mechanical joint of Pinch roller with inlet conveyor - Pinch roller motor elimination | Power | Factory Level | Pune                    | Power    | Eliminate                |  |  |
| 8                                                                     | Deburring area - Solenoid valve installation in main incoming air line                            | Power | Factory Level | Pune                    | Air      | Eliminate                |  |  |
| 9                                                                     | All Equipment - switch Off from PP after use                                                      | Power | Factory Level | Pune                    | Power    | Eliminate                |  |  |
| 10                                                                    | Shop floor T/L & Fans - Switch off after use                                                      | Power | Factory Level | Pune                    | Power    | Eliminate                |  |  |
| 12                                                                    | Oil schemer to be kept off                                                                        | Power | Factory Level | Pune                    | Power    | Eliminate                |  |  |







#### 6. Innovation - Project 3: "Innovative approach for Press power consumption reduction."

- Feasibility is checked and application study and impact of idea and effect on equipment parameters
  - Cycle Time / Productivity
  - Quality impact
  - Machine health
  - Any adverse effect of idea implementation.
- Detailed study is carried out with respect to all above points. following alternative evaluated
  - Reduction of speed by mechanical modification.
  - Reduction of speed by changing motor at required speed.
  - Reduction of speed by providing VFD.
- First two solution are not feasible due to space constraints and requirement of operation.
- Reduced speed motor will not allow variation in speed.

- Observation of Press Cushion parameter
- Cushion operation is come in to picture during ram stroke for forming operation during that time only cushion motor required high torque and power at rated frequency.
- Cycle time for forming operation is 60 sec.
- Timing required for maintaining the power torque is 3 to 4 sec at rated frequency 50 Hz.
- Remaining 55 sec motor is IDLE and continuous running at 50 Hz.



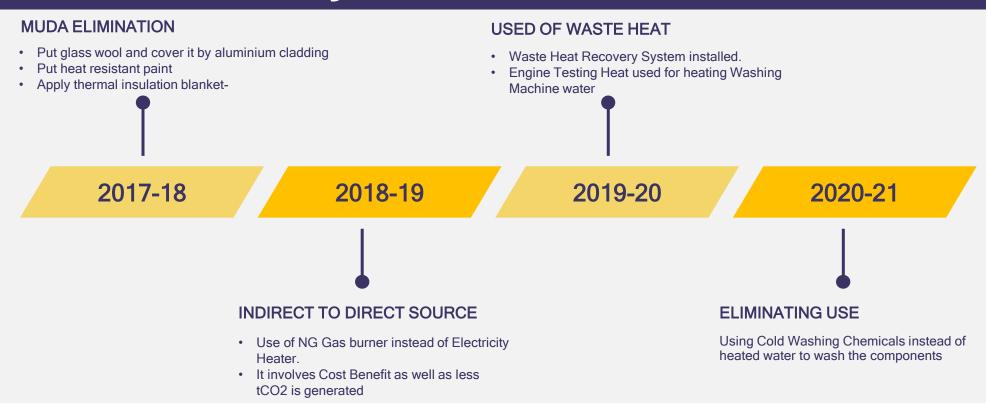


#### 6. Innovation - Project 3: "Innovative approach for Press power consumption reduction."

- As a POC Concept we have implemented one VFD for cushion motor application.
  - Electrical circuit is designed and modification done in existing electronics circuit.
  - When motor is at 50 hz forming operation is done.
  - During idle run reduced frequency of motor at 30 Hz for remaining 55 sec and confirmed that machine operation working satisfactory.
  - Due to this idea 18300 kwh/anum saving is confirmed.
- Based on this innovatiove Idea we have identified total 15 no's of opportunity in press shop factory.
- Horizontal deployment is planned during year 2021-22.

Now cushion motor running at 50Hz in up time & 30Hz in down & idle time.

Current at 30HZ – 15.3A








#### 6. Innovation -Project 4: "Room Temperature washing for Gear shop."

## **Journey Towards Innovation**



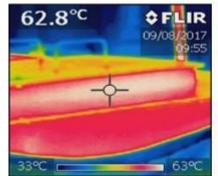


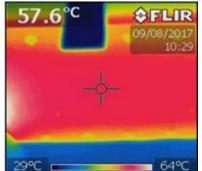


#### 6. Innovation – Project 4: "Room Temperature washing for Gear shop."

## We have Two different types of heating process for washing machines.

- Electrical Heating Process.
- Natural Gas heating Process.
- There are total 15 Nos washing machines in gear factory with Natural gas heating.
- All washing machines are installed 10 years back.
- All these machine are used to wash the components of gears.
- The flow Pipes and heater or burner area is insulated, but tank containing hot water tank were not insulated.
- The Skin temperature of the tank is in between 50 to 70°C.
- This leads to huge heat loss for all washing machines resulted in loss of heat dissipation.


#### **Before**


## **Washing Machine Tank**





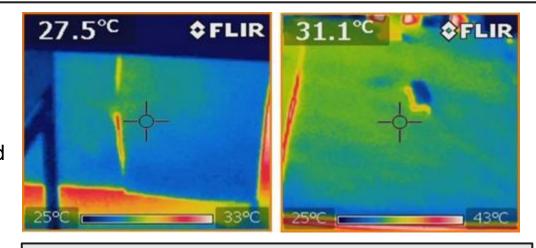
#### **Skin temperature of the System**





**Thermal Imaging Before:** 






#### 6. Innovation - Project 4: "Room Temperature washing for Gear shop."

#### How to reduce heat loss?

#### Options Evaluated

- Put glass wool and cover it by aluminum cladding Required Additional cost
- Put heat resistant paint Required additional cost
- Apply thermal insulation blanket- Required additional cost
- Apply room temp washing No additional cost



Skin temperature of the System After conversion to room temp washing 25 to 35



SAVING OF 1677 MTCO<sub>2</sub> eq

Total Fuel saving in SCM by conversion of room temperature washing machine is 70000 SCM





## 6. Innovation - Project 5 - 220KV SWITCH YARD UPGRADATION.



Opportunity Base Innovation: 220KV Switch yard Upgradation





#### 6. Innovation - Project 5 - 220 kv Switch Yard Upgradation

## **CONTROL & RELAY PANEL - CRP**





**OLD CRP PANEL** 

**NEW CRP PANEL** 

# Replacement of Old Electromechanical relay protection system replaced by numerical relay system.

- Numerical relay are based on microprocessor based technology, so achieved better power system reliability and stability.
- More Sensitivity and scalable.
- System Fault Oscillography and SER Data availability for Electrical system fault analysis.
- Power system can be digitally Communicated & Control through remote monitoring system.
- Advanced protection Features all in One box Compact sizing.
- Flexibility & Multi function capability.
- High Speed acting & Fast resetting.
- Data History and Self Diagnosis.





#### 6. Innovation - Project 5 - 220 kv Switch Yard Upgradation

## EHV SF6 BREAKER UPGRADATION

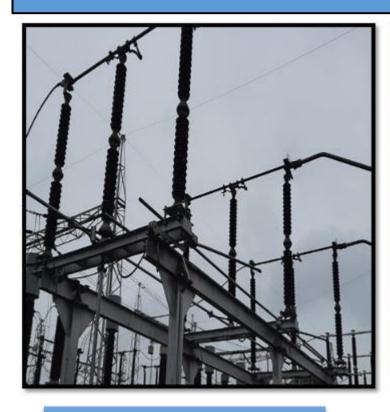


PNEUMATIC OPERATED BREAKERS



**ELECTRICAL OPERATED BREAKERS** 

Replacement of Old pneumatic operated **Circuit breakers by advanced Electrical** operated breakers.


- Electrical operated breaker avoided all installation required for compressor air system.
- **Energy Saving by eliminating compressor operations.**( 43000 Units per year)
- Reduced in required maintenance.
- Smooth in Operations.
- Increased Lifespan of equipment.
- Better reliability as compared with Pneumatic operated breakers
- Increased operational Safety.





## 6. Innovation – Project 5 – 220 kv Switch Yard Upgradation

## **EHV ISOLATOR**





Replacement of aged EHV Isolator by New technology EHV Isolator.

- Isolator with figure type contact obtained better contact resistance
- Obtained increase power reliability
- Obtained better operation safety
- Smooth in Operations.
- Increased Lifespan of equipment.

**OLD ISOLATOR** 

**NEW ISOLATOR** 






## 6. Innovation - Project 5 - 220 kv Switch Yard Upgradation

## NIFPS PROTECTION FOR TRANSFORMER

#### NIFPS SYSTEM IN 220 KV SUBSTATION









# **Installation Of NIFPS System for 220 KV Transformer.**

- Adherence to Electrical requirement.
- Transformer safety System improved. It prevent the Transformer from explosion.
- Nitrogen Gas is inert and does not react with transformer oil.
- It is completely Non-Toxic & Non-hazardous.
- It provides best cooling effect to the oil inside the Transformer.
- Forms insulating layer of N2 Blanket on top surface of the oil.
- Less Cost of Installation & Maintenance.
- Environment Friendly.
- Best System for the Areas of water Scarcity.



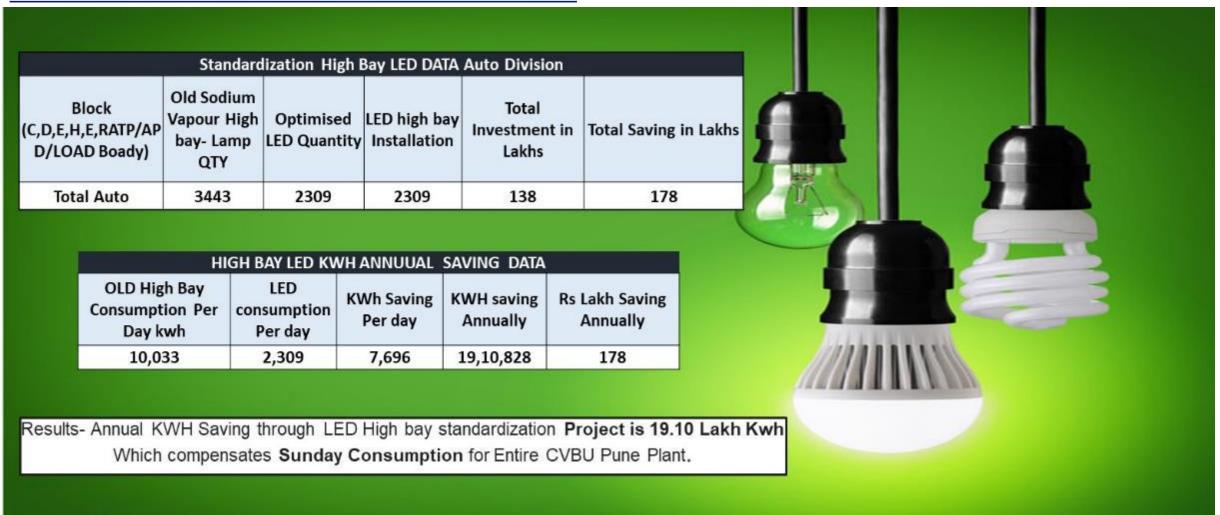


# 7. Energy Saving Projects





## 7.Energy Saving Project 1


| Operation                   | Opportunity                                                                                                  | Action taken                                                                                                          | Results                                                                                                  |  |
|-----------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--|
| Over Head HIGHBAY Lamp.     | Electrical Power consumption reduction through LED conversion of old conventional sodium vapor and T5 Lamps. | 1.Removal of Sodium vapor lamp and T5 Lamp. 2.Installation Of LED lamps. 3.Auction Of old conventional Lamp fittings. | <ul> <li>□ Energy Saving = 19.13 lakh kwh / Year</li> <li>□ Annual Savings in ₹ = ₹ 178 Lakhs</li> </ul> |  |
|                             | Before                                                                                                       | After                                                                                                                 |                                                                                                          |  |
| BEFORE E BLOCK  BEFORE RATP |                                                                                                              | AFTER E BLOCK                                                                                                         | AFTER RATP                                                                                               |  |





## 7. Energy Saving Project 1

#### CVBU PUNE SUMMARY FOR LED HIGHBAY STANDARDIZATION PROJECT







## 7.Energy Saving Projects - 2

**Electrical heating to CNG conversion** 

| lectrical fleating to one conversion                                                       |                                                                                                             |                                                                                                                   |                                                                                                                        |  |  |
|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--|--|
| Operation                                                                                  | Opportunity                                                                                                 | Action taken                                                                                                      | Results                                                                                                                |  |  |
| BK 301 – 3.3L Intermediate Robot Washing machine ,Pre honing ,Post honing washing machine. | Electrical Power consumption reduction through Electrical to NG conversion of total 5 no's washing machine. | 1.Elimination of electrical heating 2.Provision of NG burner and blower made and machine converted to NG heating. | <ul> <li>□ Total Energy Saving Per Year =2,82,000 kwh /annum</li> <li>□ Annual Savings in ₹ = ₹ 26.33 Lakhs</li> </ul> |  |  |
| Before                                                                                     |                                                                                                             | A                                                                                                                 | After                                                                                                                  |  |  |









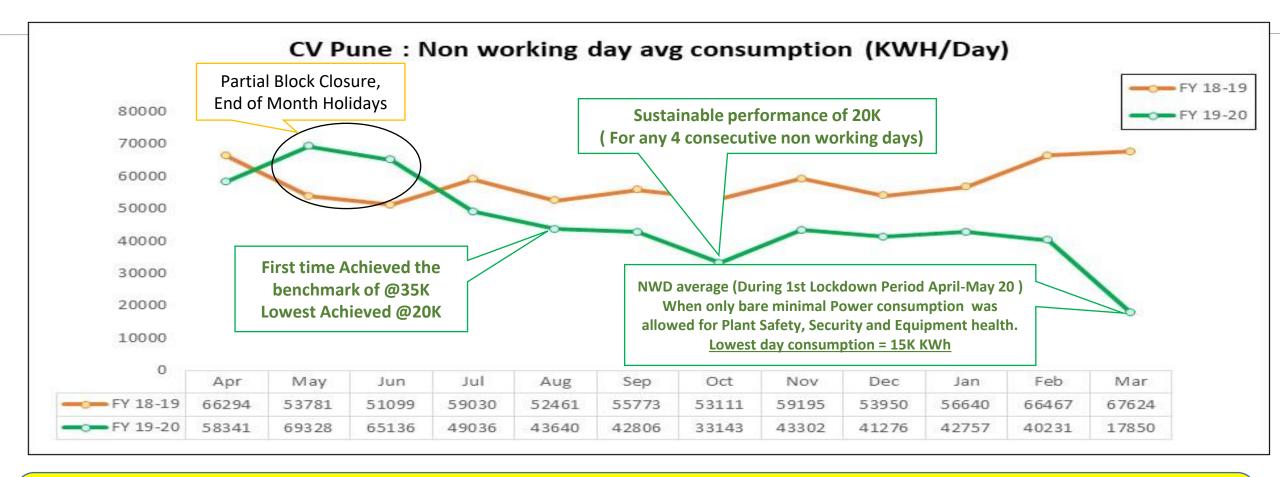
## 7.Energy Saving Project - 3

## Optimization of Paint Booth supply and exhaust fan consumption in recess time.

| Operation                                                                                                                  | Opportunity | Action taken                                                                                                      | Results                                                                                                                              |  |
|----------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--|
| Booth Positive Air velocity Maintain, by using Supply & Ex. Fan.                                                           |             | In Lunch Time, Tea Time, or No Load Condition Paint Booth Supply & Ex Fan frequency Optimization done up to 0 Hz. | <ul> <li>□ Energy Saving = 137250 kwh /Annum</li> <li>□ Annual Savings in ₹ = ₹ 10.43 Lakhs</li> <li>□ Investment = 0 Rs'</li> </ul> |  |
|                                                                                                                            | Before      | After                                                                                                             |                                                                                                                                      |  |
| In Lunch Time, Tea Time, or No Load Condition Paint Booth Supply & Ex Fan was run idle in low frequency.[ 30 Hz to 36 Hz ] |             | · ·                                                                                                               | e, or No Load Condition Paint frequency Optimization done                                                                            |  |






## 7. Energy Saving Projects 4

## Optimization of Kleentek machine power consumption.

| Operation                                                                                                                              | Opportunity                                                                                                   | Action taken                                               | Results                                                                                                                          |  |
|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--|
| 5100T, 2000T, 1030T,<br>1000T & 2500T Press<br>total 7 no Kleentek<br>machine running<br>continuously for 24hrs<br>for oil filtration. | Kleentek machine to be turned off when press is not running i.e. m/c to be interlocked with press control ON. | Kleentek machine on/off interlocked with press control ON. | <ul> <li>□ Energy Saving = 65688 kwh /Annum</li> <li>□ Annual Savings in ₹ = ₹ 6.10 Lakhs</li> <li>□ Investment = Nil</li> </ul> |  |
|                                                                                                                                        | Before                                                                                                        | After                                                      |                                                                                                                                  |  |
| Kleentek unit used in press for oil filtration process, 1.5 kW motor running for 24 hours                                              |                                                                                                               | Kleente interlock Press Co. ON                             | ontrol ALTITATE - 2025                                                                                                           |  |



## CV PUNE: NON WORKING DAY AVERAGE CONSUMPTION (KWH/DAY)



Various Energy Saving Ideas are implemented focusing on reduction in Fixed Load Consumption.

- Conversion of High Bay Sodium Vapour Lamp into LEDs.
- Also BS6 & New Machine Try-out was done during Manufacturing wherever possible.
- Complete Shutdown of Critical Machine Trials taken and implemented.

© Copyright, Confidential, Tata Motors Limited 45



## **8. Utilization of Renewable Energy Sources**



Renewable Energy

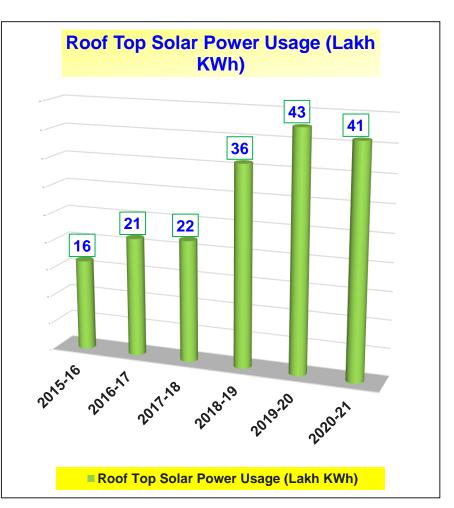




## 8. <u>Utilization of Renewable Energy Sources</u>

| Technology | Type of Energy | Onsite/<br>Offsite | Installed Capacity (MW) | Generation<br>(million kWh) | % of overall electrical energy |
|------------|----------------|--------------------|-------------------------|-----------------------------|--------------------------------|
| Wind Power | Electrical     | Offsite            | 21.95MW + 18 MW         | 29.949                      | 74.68 %                        |
| Solar PV   | Electrical     | Onsite             | 3.8 MWp                 | 3.673                       | 9.16 %                         |
| <b></b>    | T ( F          | 0                  |                         |                             | 0/                             |

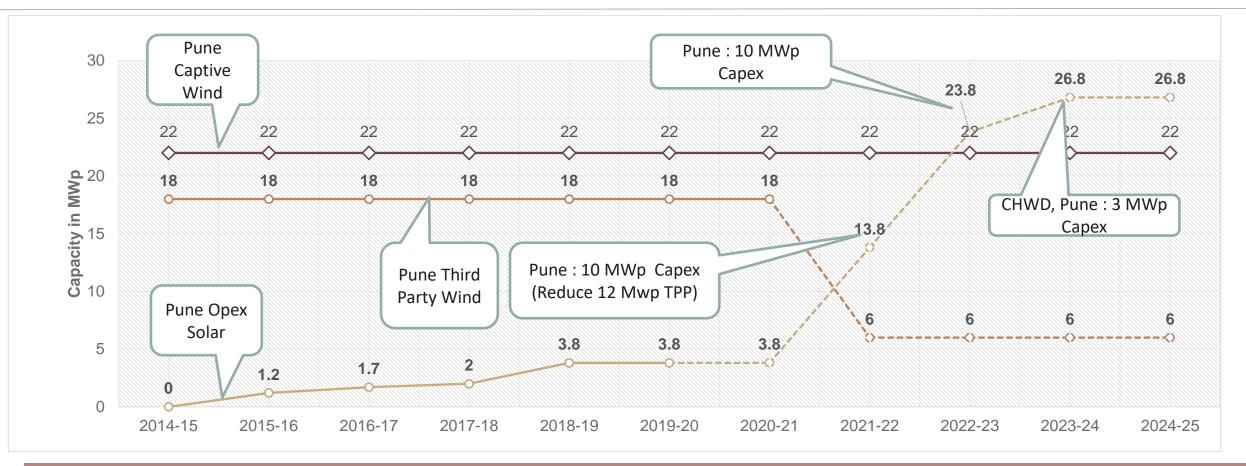
| Technology                       | Type of Energy | Onsite/ Offsite | Installed<br>Capacity | Usage (million<br>kCal) | % of overall thermal energy |
|----------------------------------|----------------|-----------------|-----------------------|-------------------------|-----------------------------|
| Solar Water<br>Heating<br>System | Thermal        | Onsite          | 36,250 LPD            | 463                     | 2.49 %                      |






## 8. <u>Utilization of Renewable Energy Sources</u>












## 8. Utilization of Renewable Energy Sources-Glide Path



- 10 MW + 10 MW Captive Solar Plant proposed for Pimpri & 3 MW Captive Solar Plant proposed for Chinchwad.
- 12 MW of PPA Wind Power will be discontinued after start up of 10 + 10 MW Captive Solar Plant for Pimpri
- Total RE Capacity at CV Pune will be 55 MW (Captive Wind + Captive Solar). Expected yearly RE Power will be @ 7 Crs / Year







Waste Utilization and Management





|    |                                | 2018-2019                             | 2019-2020                             | 2020-2021                             |                          |
|----|--------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|--------------------------|
| No | Type of waste generated        | Quantity of waste generated (MT/year) | Quantity of waste generated (MT/year) | Quantity of waste generated (MT/year) | Disposal method          |
| 1  | Grinding sludge                | 172.743                               | 116.485                               | 87.83                                 | Landfill after treatment |
| 2  | Phosphating sludge             | 51.590                                | 32.870                                | 13.14                                 | Landfill after treatment |
| 3  | Paint sludge hazardous kachara | 974.945                               | 316.840                               | 234.55                                | Incineration             |
| 4  | Waste oily Scum                | 52.360                                | 3.760                                 | 15.14                                 | Incineration             |
| 5  | Spent Resin                    | 0.620                                 | 1.520                                 | 0.86                                  | Incineration             |
| 6  | Asbestos                       | 6.026                                 | 0.024                                 | 5.75                                  | Landfill                 |
| 7  | Glass wool                     | 6.680                                 | 1.410                                 | 0.75                                  | Landfill                 |
| 8  | Chimney soot                   | 2.060                                 | 0                                     | 0.33                                  | Incineration             |
| 9  | FRP Waste                      | 12.560                                | 4.230                                 | 0.72                                  | Landfill                 |
| 10 | Shot blasting dust             | 12.480                                | 15.960                                | 7.94                                  | Landfill after treatment |





|    |                                        | 2018-2019                             | 2019-2020                             | 2020-2021                             |                                                  |
|----|----------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|--------------------------------------------------|
| No | Type of waste generated                | Quantity of waste generated (MT/year) | Quantity of waste generated (MT/year) | Quantity of waste generated (MT/year) | Disposal method                                  |
| 11 | ETP-Industrial sludge                  | 77.600                                | 133.290                               | 355.95                                | Landfill after treatment Through Authorised MPCB |
| 12 | ETP-Domestic sludge                    | 56.700                                | 2.500                                 | 10.02                                 | Landfill after treatment                         |
| 13 | Nickel + Al catalyst                   | 0.030                                 | 0                                     | 0.38                                  | Landfill                                         |
| 14 | ERC pattern waste                      | 44.848                                | 31.140                                | 14.82                                 | Incineration                                     |
| 15 | HFO sludge                             | 10.340                                | 0                                     | 0                                     | Incineration                                     |
| 16 | Door, Roof liner                       | 32.200                                | 15.040                                | 4.8                                   | Landfill                                         |
| 17 | Broken Tube lights                     | 11.760                                | 1.020                                 | 0.99                                  | Landfill after treatment                         |
| 18 | Paint sludge - MPCB Regd.<br>Re-cycler | 61.160                                | 44.834                                | 61.91                                 | Recycle                                          |
| 19 | Paint sludge - MPCB Regd.<br>Re-cycler | 0                                     | 100.800                               | 84.76                                 | Recycle                                          |





#### key initiatives taken for enhancing waste utilization.

1. Paint sludge converted in to usable Paints.

#### 2.VFH (Value From Hazardous waste)

- Effective Segregation
- Elimination of waste at generation source
- Use of waste for value Creation
- Reuse and Recycle the waste

**3.WCEP (World Class Environment Practice)** – 4 Year Action plan.

**4.Biogas Plant -** Entire canteen waste is converted into biogas.

**5.Compost Pit for Canteen waste treatment** – (excess canteen waste if any)

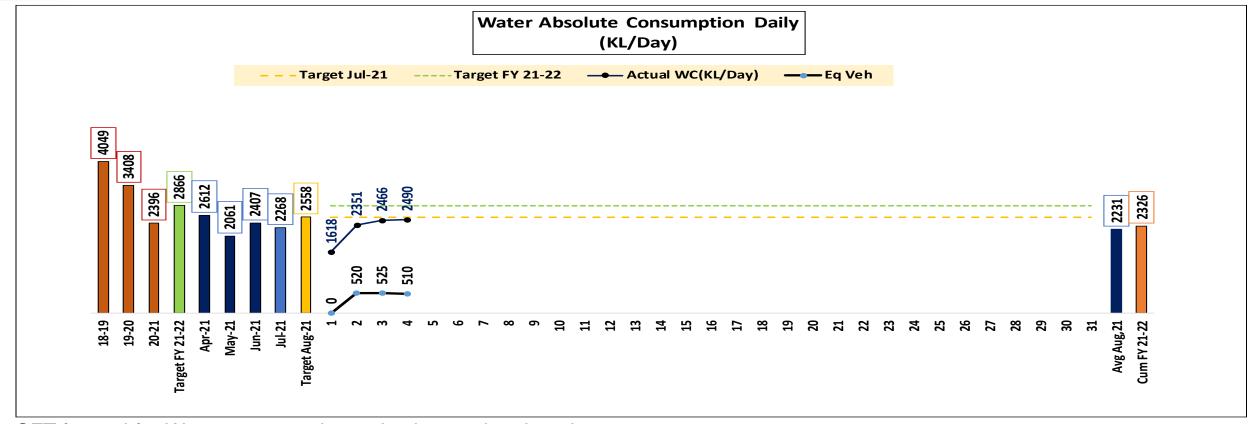
6.ZLD - Zero Liquid Discharge plant - (Treated water used for garden & horticulture water demand.)

7. Solid waste Segregation

8.OCEMS – on line continuous effluent monitoring system for ETP & STP






## **10.Water Consumption Status**





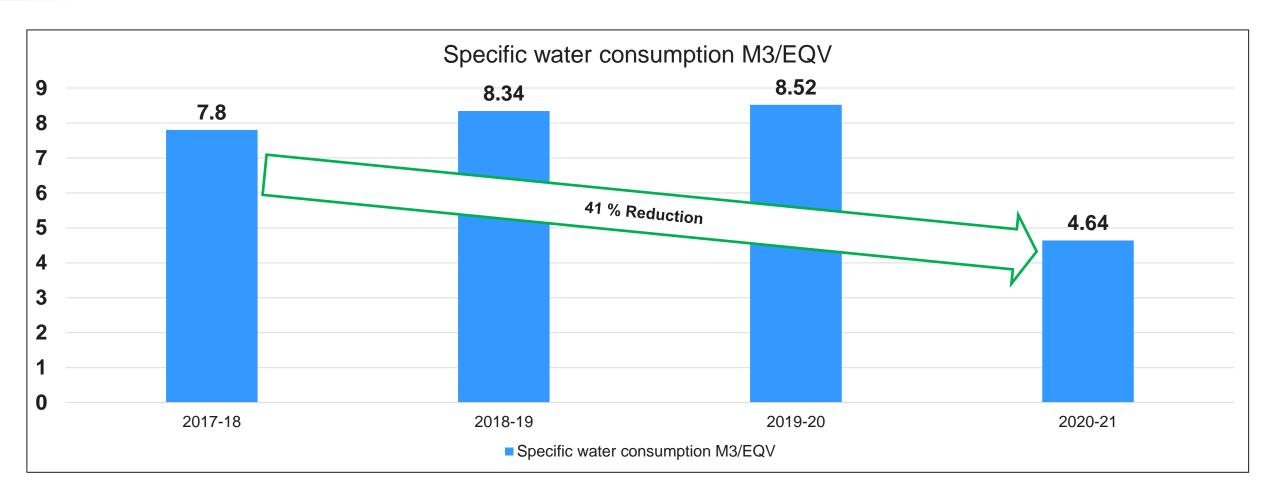


## **10.Water Consumption Status**



CFT formed for Water consumption reduction at plant Level.

2.5 KM Old underground headers line replaced with above ground.

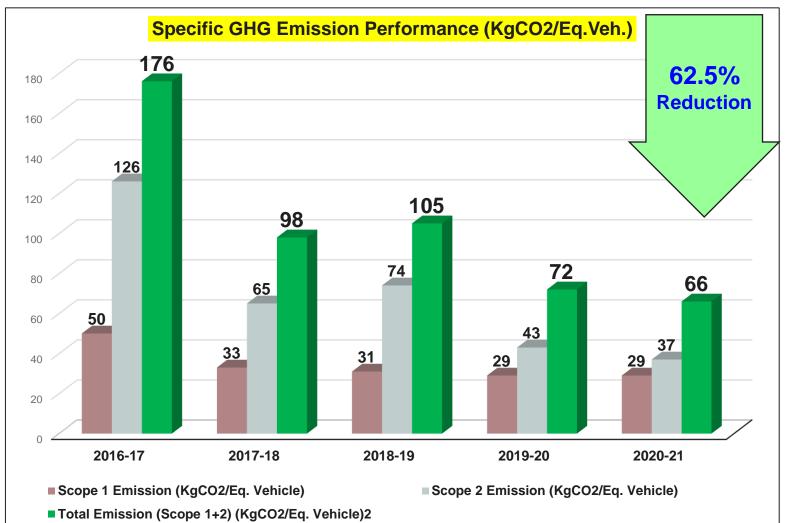

IoT base Consumption monitoring is planned for individual block.

Headers are planned at shop level.





## **10.Water Consumption Status**

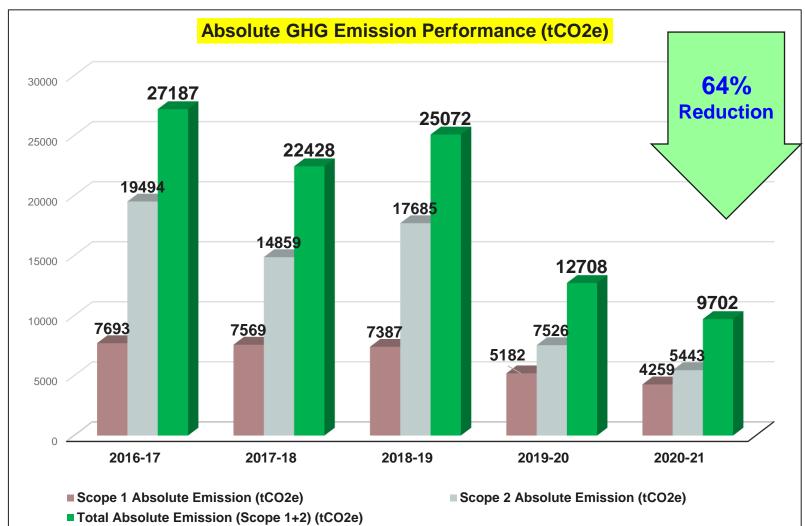



New Facility added for BS6 in the year 2019-20





## 11. GHG Inventorisation




| Scope                | Emission Sources<br>Considered                                                                                                      |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Scope 1<br>Emissions | Fuel consumed for - Process Heat Generation - Process Use - Canteen - Engine Testing - Power Generation - Internal Vehicle movement |
| Scope 2<br>Emissions | Purchased Electricity excluding renewable energy                                                                                    |
| Scope 3<br>Emissions | WIP                                                                                                                                 |





## **11. GHG Inventorisation**

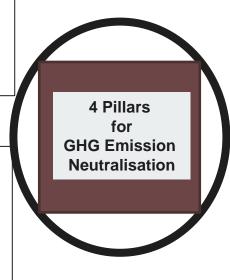


| Scope                | Emission Sources<br>Considered                                                                                                      |  |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------|--|
| Scope 1<br>Emissions | Fuel consumed for - Process Heat Generation - Process Use - Canteen - Engine Testing - Power Generation - Internal Vehicle movement |  |
| Scope 2<br>Emissions | Purchased Electricity excluding renewable energy                                                                                    |  |
| Scope 3<br>Emissions | WIP                                                                                                                                 |  |





## 11. GHG Inventorisation: Action Plan for CO<sub>2</sub> Emission Reduction:-


## **4 Pillars of Neutralising GHG emission**

#### □ Green Power Purchase

- † Quick gain
- \* Manage Business variability
- Recurring add-on Power Purchase expenses

## ☐ EnCOn Projects for Power consumption reduction

- Mid & Long term gain
- Continuous process
- Reduces Power consumption permanently
- Improves Operation Efficiency & reduces cost impact
- Controlled by Idea generation & Technology availability /Maturity
- Capex requirement



- ☐ Captive RE / RE100 (Wind, Solar)
- \* Mid & Long term gain
- Reduces Power Purchase cost
- Controlled by Regulation
- Capex requirement

## ☐ EnCOn Projects for Fuel consumption reduction

- † Mid & Long term gain
- † Continuous process
- Reduces Fuel consumption permanently
- Improves Operation Efficiency & reduces cost impact
- Controlled by Idea generation & Technology availability /Maturity
- Capex requirement

## Action Plan for CO<sub>2</sub> Emission Reduction:-

Maximise use of Renewable Energy (Wind Power & Solar Power) with in regulatory framework

- 1) Captive Wind Power through Open Access
- 2) Third Party Wind Power through Open Access
- 3) On-site Rooftop Solar Power Plant.
- 4) Science Base Target for CO<sub>2</sub> Emission Reduction

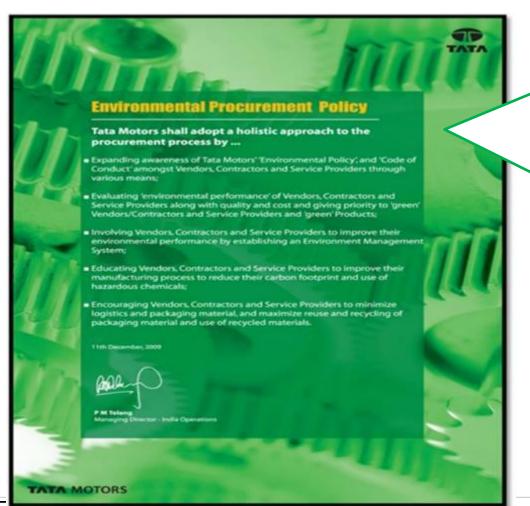
**Short Term Target**: As per MERC order and MSEDCL Circular, we are process to procure RE power to achieve the GHG emission target set at Plant Level, Company & Group Level.

**Long Term Target**: To install Offsite 25MWp Group Captive Solar Power Plant.





## **12.GREEN SUPPLY CHAIN**




# GREEN SUPPLY CHAIN





#### **Green Purchase Policy:-**



# Our Environmental Procurement Policy aims at;

- Awareness of TML Environmental Policy & TATA Code of Conduct amongst suppliers;
- Environmental performance evaluation and priority to "Green Suppliers";
- Encouraging suppliers to improve environmental performance and implement EMS;
- Reduce carbon footprint and use of hazardous substances;
- Minimize logistics and packaging material, Maximize reuse and recycling.





## **Supplier Evaluation/audit :-**

Communication of Policies, TCoC and Sustainability Guidelines & data templates to suppliers

Training and capacity building of suppliers and P & SQ teams on sustainability

Monitoring and assessment of suppliers through data collection, site audits

Recognition of suppliers

# Sustainability Guidelines for Suppliers were prepared covering key topics;

- ✓ Governance
- ✓ Legal Compliance
- ✓ Tata Code of Conduct
- Management System Certifications
- ✓ Environment & Climate Change
- ✓ Health & Safety
- ✓ Labor & Human Rights
- ✓ Transparency & Reporting





## **Supplier Evaluation :- GREEN CONSIDERATIONS IN CAPITAL EQUIPMENT PURCHASE**

| Step 1                                                                                                                                                                                                                                                                                                                                                                  | Step 2                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Request For Quotation  Supplier submits following information for the proposed solutions  Power Consumption  Fuel consumption  Air consumption  Consumables required  Green features:  Hibernation mode if machine is non-operational  Provision for monitoring of Power consumption and raising alarm in case power consumption is higher than set values.  Cycle time | <ul> <li>Evaluation of equipment based on Green criteria</li> <li>Machines are compared feature to feature and if any of the feature is missing supplier is asked to include the feature and send a fresh offer.</li> <li>Once both the machines are at par on the feature then energy requirement, green features are compared and evaluation made.</li> </ul> |







Green
Procurement
Policy



Education and awareness



Resource Conservation through SCM Systems



Efficiency
Improvement
Program for
Suppliers



Resource
Intensity
Reduction in
Supply Chain

## Baseline and target for reduction of Supplier's Resources Consumption

**Year on Year Reduction Targets for suppliers:** 

| Parameter            | Short Term | Medium Term | Long Term |
|----------------------|------------|-------------|-----------|
| Energy, Water, Waste | 3%         | 5 %         | 5-10 %    |





## **Supplier Evaluation/audit :-**

Every year workshops on "Sustainable Supply Chain Initiative" are organized for our suppliers across locations, to create awareness on the importance of sustainable value chain and to communicate our Sustainability Guidelines and Baseline data template. Till FY 2021, we have organized around 32 workshops, covering 600 plus suppliers.



Workshop @ Pune



Workshop @ Lucknow

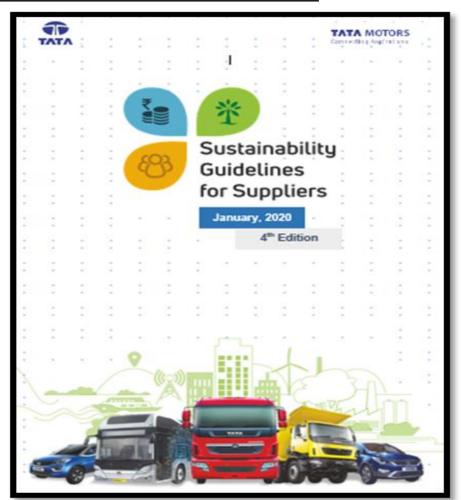


Workshop @ Jamshedpur



Workshop @ Pantnagar




Workshop @ Pune




Workshop @ Dharwad

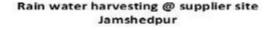


## **Sustainability Guidelines for Suppliers:**










## **Suppliers Evaluation/audit:-**

Supplier site assessment involves verification of backup documents for data shared in baseline data template and a site round. Observations made during the assessment will be subsequently shared with supplier for closure. Based on criticality of observations, supplier will be categorized under RED, YELLOW, GREEN or BLUE band. In FY 2021, due to COVID-19 scenario, virtual assessments were carried out.

Child labor Prohibition Act displayed

@ supplier site, Jamshedpur



Female workforce @ supplier site, Dharwad



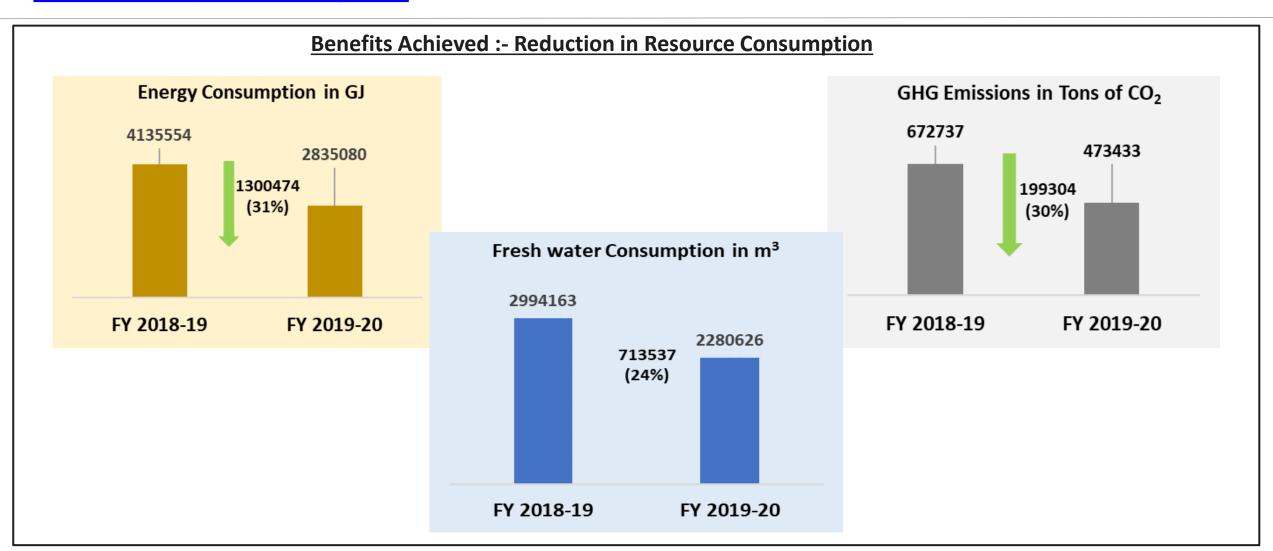











ETP @ supplier site, Sitarganj

Designated fuel storage @ supplier site, Lucknow

Safety curtains @ supplier site, Pune









**Benefits Achieved :- Rooftop Solar Power Generation Plant** 



Solar Panels @ supplier site, Dharwad



Roof top solar supplier site, Gurgaon



Roof top solar supplier site, Pune

More Than 2MWp Roof Top Solar at Supplier END



Roof top solar @ supplier site, Pune

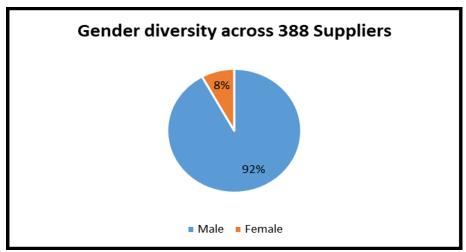


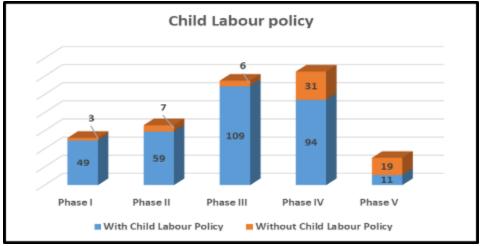
Roof top solar @ supplier site, Bangalore

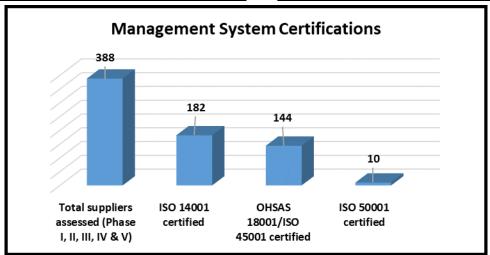


Roof top solar @ supplier site, Pune







#### **Benefits Achieved :- Rain Water Harvesting System** Hedff ( Rain water harvesting system capable of SHEDS WATER PIPE FROM CONNECTED TO MAIN PIPE LINES SHED TOP MAIN PIPE TO CHAMBER collecting **50,302** cum of rain water in a year. MAIN PIPE LINES WATER TREATMENT PRIMARY STORAGE SECONDARY PLANT TO CHAMBER TANK STORAGE TANK Rain Water Harvesting System @ Ramkrishna Forgings Ltd., Jamshedpur






## **Benefits Achieved :- Social & Governance Benefit**

















# Employee Involvement





# 2. Review meeting chaired by Plant Head. Hierarchy of Energy Management System



| Energy Team                   |                       |
|-------------------------------|-----------------------|
| Champion                      | Mr Nitin Tilak        |
| LCV Factory                   | Mr Dhananjay Shahane  |
| ICV Factory                   | Mr Nagoji Patil       |
| Xenon Factory                 | Mr Ravi Phadnis       |
|                               | Mr Girish Kulkarni    |
| Engine Factory                | Mr Sunil Chavan       |
|                               | Mr Sanjay Gaikwad     |
| Gear Factory                  | Mr. Raju Ghadage      |
| Aula Factom                   | Mr Prabhakar Khairnar |
| Axle Factory                  | Mr Balasaheb Pawar    |
| E Block Factory               | Mr Pankaj Thaman      |
| Paint Shop Factory            | Mr Sachin Kasture     |
| Foundry Grey Iron             | Mr Pankaj Patil       |
| Foundry Aluminium             | Mr Sandip Takavane    |
| AC & R & Compressor           | Mr Mahindra Hingase   |
| MRS & DG House                | Mr Milind Mench       |
| ETP, WTP, & Haz Waste         | Mr Bhausaheb Patil    |
| CPED Chinchwad                | Mr Vinod Yadav        |
| <b>Production Engineering</b> | Mr. Vineet Rana       |
| Auto Projects                 | Mr Asit Pandya        |
| ERC                           | Mr Mahesh Chougule    |
| Training                      | Mr Sushil Warang      |
|                               | Mr Sudhir Bhale       |
|                               | Mr Anil Dethe         |
| Central co-ordinators         | Mr Vivek Deshpande    |
|                               | Ms Komal Battula      |
|                               | Mr Pranav Katkamwar   |





#### **ENERGY CONSERVATION WEEK CELEBRATION**

## • 14<sup>Th</sup> DEC To 20<sup>Th</sup> DEC 2020

## **Energy Oath glimpse.**





















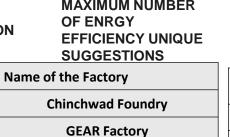
#### **ENERGY CONSERVATION WEEK CELEBRATION**

## SUGGESTION SCHEME - CVBU PUNE

**Energy Conservation Campaign !!!** 

| PNCV_USS@156_19-20_16 | December 17, 2019                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Subject               | USS (Unique Suggestion Scheme) on Energy Conservation                                                                                                                                                                                                                                                                                                                     |
| Scope                 | Pune CVBU Plant (including ERC, TTL & Maval)                                                                                                                                                                                                                                                                                                                              |
| Applicable to         | Permanent / Probationers / Fix Term / Temp / Trainee<br>Employees on TML Pay Roll                                                                                                                                                                                                                                                                                         |
| Period of USS         | December 17, 2019 to January 25, 2020                                                                                                                                                                                                                                                                                                                                     |
| USS Focus Areas       | Topics on which the fresh suggestions can be submitted: Reduction in energy consumption by change in process, Arresting Energy Wastage in Machine Operation Cycles Capacity Downsizing of Energy Pumps /Motors Optimization of Air conditioning plant Optimization of Compressed Air Consumption Ways to optimise Water Usage & Fuel Office Lighting and Air Conditioning |

## • 14<sup>Th</sup> DEC To 20<sup>Th</sup> DEC 2020




**USS 156 - PARTICIPATION AWARD FOR EXCELLENCE IN ENRGY EFFICIENCY SUGGESTION SCHEME** 



**AWARD FOR MAXIMUM NUMBER** 

**Axle Factory** 





**USS 156 - BEST SUGGESTION** AWARD FOR EXCELLENCE IN **ENRGY EFFICIENCY** SUGGESTION SCHEME.

**Best Suggestion in Tata Motors CVBU Pune-Waste Heat** recovery Test Engine Test Bed. Name of the Factory **Engine Factory** 



1

2

3



## 11. Team Work, Employee Involvement & Monitoring - IDEA GENERATION WORKSHOPS

| Sr No. | Factory                  | No. of<br>Ideas<br>Generated | Potential<br>KWH<br>Saving /day |
|--------|--------------------------|------------------------------|---------------------------------|
| 1      | Engine Factory           | 74                           | 2000                            |
| 2      | E Block Factory          | 106                          | 1200                            |
| 3      | Gear Factory             | 61                           | 1000                            |
| 4      | Paint Shop               | 49                           | 1200                            |
| 5      | Foundry                  | 107                          | 1200                            |
| 6      | Xenon                    | 42                           | 150                             |
| 7      | LCV                      | 67                           | 178                             |
| 8      | Fdy CLT Idea<br>Workshop | 155                          | 1000                            |
| 9      | ERC CLT Idea<br>Workshop | 70                           | 1300                            |
|        | Total                    | 731                          | 6228                            |



**ERC CLT Idea generation workshop** 



**Foundry CLT Idea generation workshop** 



J 11 Paint Factory Work shop



**Gear Factory Work shop** 

**Factory Level Workshop** 





#### ENERGY CONSERVATION TRAINING PROGRAMS



# Advanced Training Programme on Energy Efficiency on 27 & 28 February 2020, Pune

| C:: No | CVDII Duna | Nominations      |  |
|--------|------------|------------------|--|
| Sr.No. | CVBU Pune  | Name             |  |
| 1      | Gear       | Sanjay Dhake     |  |
| 2      | Engine     | Mahesh Mathkar   |  |
| 3      | Press Shop | Suraj Kumar Sahu |  |
| 4      | Paint Shop | Sunil Lokhande   |  |
| 5      | ERC        | Mahesh Chougule  |  |



| O:: No | Nominations      |  |
|--------|------------------|--|
| Sr.No. | Name             |  |
| 1      | Komal Battula    |  |
| 2      | Pranav Katkamwar |  |





# Online Sessions arranged in Lockdown

| Sr  |                             |           |                    |
|-----|-----------------------------|-----------|--------------------|
| No. | Sessions                    | Date      | Arranged by        |
|     |                             | 14th Apr  |                    |
| 1   | Technical Session on VFD    | 2020      | Schneider Electric |
|     |                             | 17th Apr  |                    |
| 2   | PLC & Drive Basics          | 2020      | Schneider Electric |
|     | KVAH Billing, Harmonics and | 18th Apr  |                    |
| 3   | Power Quality Solutions     | 2020      | Schneider Electric |
|     |                             | 28th Apr  |                    |
| 4   | Selection of LV Switchgear  | 2020      | L&T                |
|     | Energy Savings with VFD &   |           |                    |
|     | Automation in Automobile    | 25th July |                    |
| 5   | Industry                    | 2020      | L&T                |



11. Cll 21st National Award for Excellence in Energy Management 2020





TATA MOTORS CVBU Pune Won "CII National Award for Excellence in Energy Efficiency Unit 2020" and Prestigious "CII National Energy Leader award 2020"



**CII National Energy Leader award** 

**Excellence in Energy Efficiency unit Award** 

CII 21st National Award for Excellence in Energy Management 2020

© Copyright, Confidential, Tata Motors Limited



## 12. Any Other Relevant Information

#### **Recognition / Awards**



<u>2018</u>

"CII - National Award for Excellence in Energy Management Award -2018"

TATA Motors Ltd., CVBU Pune Won the "CII-National Energy Leader Award -2018"



**2019** 

"CII - National Award for Excellence in Energy Management Award -2019" TATA Motors Ltd., CVBU Pune Won the "CII-National Energy Leader Award -



**2017** 

TATA Motors Ltd., CVBU Pune Won the "CII-National Award for Excellence in Energy Management -2017" and declared as "Excellent Energy Efficient Unit"



"CII – Green Co Gold Rating Award -2017"

TATA Motors Ltd., CVBU Pune Won the "CII- Green Co Gold Rating Award-2017" at Green Co Summit organized by Confederation of Indian Industries at Pune.





#### 12. Any Other Relevant Information

## **Recognition / Awards**



## "RE Excellence End User Award 2018"

**TATA Motors Ltd., CVBU Pune** Won the "RE Excellence award – End User Category" at REI summit organized by UBM group at Greater Noida.



## **"BEE - National Energy Conservation Award -2017"**

TATA Motors CVBU Pune has been awarded the "Certificate of Merit" of National Energy Conservation Award 2017, in Automobile Manufacturing category by Bureau of Energy Efficiency (BEE), Ministry of Power, Government of India.



# "Golden Peacock Award for Energy Efficiency -2017"

TATA MOTORS CVBU PUNE Won the "Golden Peacock Award for Energy Efficiency" in 19th World Congress on ENVIRONMENT MANAGEMENT", On 7th July, 2017 in Hyderabad.



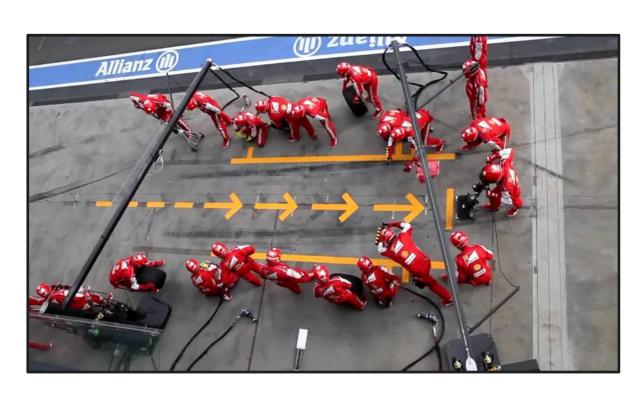


## 13. Long Term Vision on EE

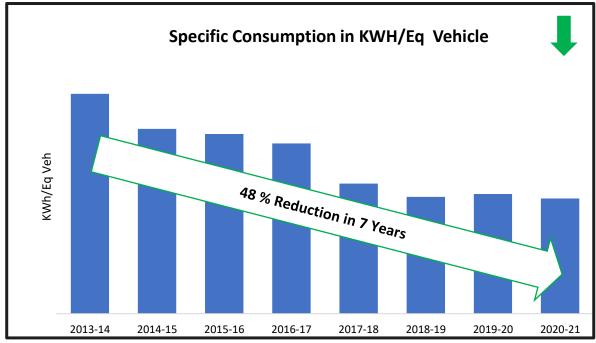







## 13. Long Term Vision on EE

| Long Term Vision on EE - Energy Efficiency:-                                                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TATA Motors CVBU Pune Plant follows the ISO:50001 Energy Management System and will continue to refine all process to improve the Energy Efficiency.                                              |
| We are following robust process of assessment of performance vis-à-vis comparative information / benchmark from different organisation and standards for.                                         |
| <ul> <li>□ Optimise Resources</li> <li>□ Adapt Latest Technology</li> <li>□ Innovations</li> <li>□ Maximise Renewable Energy</li> <li>□ Science Base Target to Reduce Carbon Footprint</li> </ul> |




## - And Journey Continues





## .....And Journey Continues



## **THANK YOU**

